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1 Faculty of Informatics, University of Debrecen, Hungary
2 Department of Applied Mathematics, University of Miskolc, Hungary

Abstract: The Central Limit Theorem is proved for m-dependent random
fields. The random field is observed in a sequence of irregular domains. The
sequence of domains is increasing and at the same time the locations of the
observations become more and more dense in the domains.

Zusammenfassung: Der zentrale Grenzwertsatz wird für m-abhängige Zu-
fallsfelder bewiesen. Das Zufallsfeld wird an einer Sequenz von irregulären
Punkten beobachtet. Die Sequenz der Gebiete wächst und gleichzeitig wer-
den die Lokationen der Beobachtungen immer weniger dicht.
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1 Introduction
In statistics most asymptotic results concern the increasing domain case. That is, a
stochastic process (or a random field) is observed in an increasing sequence of domains
Dn where the size of Dn goes to infinity as n → ∞. However, in spatial statistics one can
observe a random field in a fixed domain such a way that the locations of observations be-
come dense in that domain (infill asymptotics, see Cressie, 1991). The increasing domain
and the infill approaches can be combined as well. We call it nearly infill sampling (or
infill-increasing setup) when the sequence of domains is increasing and at the same time
the locations of observations become dense. Using this setup, Lahiri (1999) studied the
asymptotic behavior of the empirical distribution function. Furthermore, Lahiri, Kaiser,
Cressie, and Hsu (1999) gave practical application of this approach. Using the infill-
increasing approach, Fazekas (2003) obtained a functional limit theorem for the spatial
empirical distribution function.

When studying a continuous parameter process, we observe it at discrete points of
the domain. This method is called sampling (see Bosq, 1998) and it is closely related
to the infill-increasing approach. Moreover, any numerical study (e.g. simulation) of a
continuous parameter stochastic process is based on discrete approximations (e.g. an in-
tegral is approximated with a sum). Therefore a considerable part of the numerical results
on continuous parameter processes can be considered as results in the infill-increasing
scheme.

The importance of the infill-increasing setup is underlined by the results of Fazekas
and Chuprunov (2006). Their main theorem shows that the limiting distribution of the
kernel type density estimator in the infill-increasing model can be a combination of the
ones in the discrete parameter and the continuous parameter models. A similar result was
obtained for kernel type regression estimator in Karácsony and Filzmoser (2010).
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Park, Kim, Park, and Hwang (2009) presented central limit theorems (CLT) for irreg-
ular domains assuming nearly infill sampling. They applied the CLTs to show asymptotic
normality of the kernel type density estimator. However, they did not consider multivari-
ate normality.

The aim of our paper is to prove a central limit theorem for nearly infill sampling.
To obtain results being interesting for applied statisticians the domain of observations is
allowed to be irregular.

Consider a domain D in Rd. We observe a random field in certain points of D. More
precisely, the random field ξ(·) is observed at finitely many locations i.e. at the elements
sn1, . . . , snn lying in the sampling region Dn ⊂ D. Since we consider the mixed (or
nearly infill or infill-increasing) domain sampling, the sampling region Dn increases (that
is Dn ⊆ Dn+1) and at the same time, the data sites sn1, . . . , snn fill in any given sub-
region of Dn increasingly densely as n → ∞. The set of the locations of the observations
is denoted by Rn: Rn = {sn1, . . . , snn}. We mention that it is not a real restriction of the
generality that the size of the n-th sample is n.

To obtain asymptotic normality, we assume that the nth set of observations is ξn(sn1),
. . . , ξn(snn) where ξn(·), n = 1, 2, . . . , is a sequence of stationary random fields and ξn(·)
is weakly dependent for any fixed n. For the sake of simplicity, we suppose that ξn(·)
is m-dependent. It is a restriction but it has an advantage, namely that we can easily
obtain a central limit theorem for irregular domains. We mention that similar results can
be obtained for mixing random fields as well (see e.g. Fazekas and Chuprunov, 2004, but
there the domain is regular and the conditions are quite difficult to check).

Section 2 contains the notations. The basic result and its proof is presented in Sec-
tion 3. Our Theorem 1 is a CLT for irregular domains. It is a version of Theorem 2 of
Park et al. (2009). To prove Theorem 1 we apply the ideas of Park et al. (2009) that is
using the classical theorem of Fréchet and Shohat (1931). We present a detailed proof,
most of the technical parts are summarized in Lemma 2. In Section 4 we extend Theo-
rem 1 for multivariate observations. Section 5 contains numerical (simulation) results. A
moving average process is observed in a highly irregular two-dimensional domain and the
asymptotic normality of the empirical distribution function is shown there.

2 Notations
Let us consider a zero mean strictly stationary random field {ξ(s) : s ∈ D}, D ⊆ Rd.
Here, the strict stationarity of the random field means that for any s1, . . . , sk, t, the distri-
bution of (ξ(s1), . . . , ξ(sk)) is the same as that of (ξ(s1 + t), . . . , ξ(sk + t)).

We assume that the random field ξ(·) is m-dependent. m-dependence means that m is
the infimum of the numbers denoted by b such that if ∥s1 − s2∥ > b, then ξ(s1) and ξ(s2)
are independent. Here, ∥ · ∥ denotes the Euclidean norm in Rd. For u ∈ Dn, let

Im,n(u) = {s ∈ Rn : ∥s− u∥ ≤ m}

and κn = maxu∈Dn ♯{Im,n(u)}. Thus, κn denotes the number of elements of the set
Im,n(u) with maximal cardinality. Therefore, κn is an indicator of the strength of depen-
dence. To avoid the independent case, we assume that κn > 0 for each n. We suppose
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that the measure κn of the density of the locations satisfies

κn ∼ na with a constant 0 < a < 1 . (1)

Here for any two series {tn} and {vn} of positive numbers, the notation tn ∼ vn means
that the relation

0 < c1 ≤ lim inf
n→∞

(tn/vn) ≤ lim sup
n→∞

(tn/vn) ≤ c2 < ∞

holds for positive constants c1 and c2.
For real valued sequences {an} and {bn}, the notation an = o(bn) (resp. an = O(bn))

means that the sequence an/bn converges to 0 (resp. is bounded).
The sign E stands for expectation. Variance and covariance are denoted by var(·) and

cov(·, ·), respectively. The sign ” ⇒ ” denotes convergence in distribution. N (m,Σ)
stands for the (vector) normal distribution with mean (vector) m and covariance (matrix)
Σ.

3 Central Limit Theorem for Stationary Random Fields
Now, let us consider a series of strictly stationary m-dependent random fields {ξn(s) : s ∈
D}, D ⊆ Rd, n = 1, 2, . . . . For a fixed n, let us introduce the notations ξi = ξn(sni) and
Sn =

∑n
i=1 ξn(sni) =

∑n
i=1 ξi. Furthermore, let Tn = {(i, j) : 0 < ∥sni − snj∥ ≤ m},

νn = var(ξn(s)) and

τn =
1

nκn

∑
(i,j)∈Tn

cov(ξn(sni), ξn(snj)) . (2)

At this point we notice that var(Sn) = nνn + nκnτn and τn can be negative as well. The
following theorem is a version of Theorem 2 of Park et al. (2009).

Theorem 1. Assume that (1) is satisfied. Consider the following conditions.

(i) Let {ξn(s) : s ∈ D}, D ⊆ Rd, n = 1, 2, . . . be a sequence of strictly stationary
m-dependent random fields.

(ii) For all n and s, let Eξn(s) = 0 and νn = var(ξn(s)). Assume that νn > 0 if n is
large enough.

(iii) For all {s′n1, . . . , s′nl} ⊆ {sn1, . . . , snn}, let

E

∣∣∣∣∣
l∏

j=1

ξn(s
′
nj)

∣∣∣∣∣ = O
(
ν

l
2
n

)
hold uniformly as n → ∞ . (3)

(iii’) For all pairwise different elements s′n1, . . . , s
′
nl of the set {sn1, . . . , snn}, relation (3)

is satisfied uniformly, κnν
1
2
n ≥ 1 and |ξn(s)| ≤ 1 holds for all n and s.
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(iv) For a δ > 0, let
νn + κnτn ≥ δκnνn ..

Then, either conditions (i)–(ii)–(iii)–(iv) or conditions (i)–(ii)–(iii’)–(iv) imply that

Sn√
var(Sn)

⇒ N (0, 1) .

To prove Theorem 1, we need some preliminary considerations. For a fixed and posi-
tive integer n let us determine the value of the expression

E(Sr
n) = E(ξ1 + · · ·+ ξn)

r =
∑

E(ξi1ξi2 · · · ξir) , (4)

where the sum is to be executed for all the ordered elements {i1, . . . , ir} ⊂ {1, . . . , n}.
(Among i1, . . . , ir there can be identical indices.)

For each factor of the sum in (4), we give an undirected graph {i1, . . . , ir} with ver-
tices i1, . . . , ir. Note here that some vertices can be equal in the graph {i1, . . . , ir}. We
say that in {i1, . . . , ir} the pair (ip, iq) is connected if ∥snip − sniq∥ ≤ m or there exists a
path {j1, . . . , jl} ⊂ {i1, . . . , ir} such that

∥snip − snj1∥ ≤ m, ∥snj1 − snj2∥ ≤ m, · · · , ∥snjl − sniq∥ ≤ m,

or, in other words, we can get from ip to iq through vertices which have a distance less
than or equal to m from each other. It means that in the graph there is an edge if and
only if the distance of two vertices is less than or equal to m. Obviously, this graph falls
into components which are denoted by I1, . . . , Ik. Here, Iu ∩ Iv = ∅ if u ̸= v and∪k

u=1 Iu = {i1, . . . , ir}. A component Iu of our graph is a subset {i1, . . . , it} where all
the vertices are connected to each other. Let us recall that κn denotes the maximal number
of points that can be located at a distance less than or equal to m from a given point.

For a graph G = {i1, . . . , ir}, let its score function (see Park et al., 2009) be defined
by

s(G) = E(ξi1 · · · ξir).

Similarly, define the score of a component I of a graph by s(I). Let Gk be the collection
of all graphs which have exactly k components. Then E(Sr

n) can be written as

E(Sr
n) =

r∑
k=1

∑
G∈Gk

s(G) .

Lemma 2. Assume that (1) is satisfied. Consider the following conditions.

(i) Let {ξn(s) : s ∈ D}, D ⊆ Rd, n = 1, 2, . . . be a sequence of strictly stationary
m-dependent random fields.

(ii) For all n and s, let Eξn(s) = 0 and νn = var(ξn(s)). Assume that νn > 0 if n is
large enough.
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(iii) For all {s′n1, . . . , s′nl} ⊆ {sn1, . . . , snn}, let

E

∣∣∣∣∣
l∏

j=1

ξn(s
′
nj)

∣∣∣∣∣ = O
(
ν

l
2
n

)
hold uniformly as n → ∞ . (5)

(iv) For a δ > 0 let
νn + κnτn ≥ δκnνn .

(iii’) For all pairwise different elements s′n1, . . . , s
′
nl of the set {sn1, . . . , snn}, relation (5)

is satisfied uniformly, κnν
1/2
n ≥ 1 and |ξn(s)| ≤ 1 holds for all n and s.

(iii”) Let {ξn(sni), i = 1, 2, . . . , n} be a Gaussian system for each n ∈ N.

Then, either from conditions (i)–(ii)–(iii)–(iv), (i)–(ii)–(iii’)–(iv) or (i)–(ii)–(iii”)–(iv)
it follows that

for k > r
2
:

∑
G∈Gk

s(G) = 0 ,

for k < r
2
:

∑
G∈Gk

s(G)

(varSn)
r
2

= o(1) ,

and for k = r
2

(if r is even):
∑

G∈Gk
s(G) gives the sum of products of the scores belonging

to the components of size 2.

Proof. If I1, . . . , Ik are the components of G, then s(G) = E(ξi1 · · · ξir) =
∏k

u=1 s(Iu),
because for any two different components Iu and Iv the relation

min
i∈Iu,j∈Iv

∥sni − snj∥ > m

is satisfied. (So the expected value falls into products because of the m-dependence.)
Now, let us determine the value of

∑
G∈Gk

s(G) depending on k.
Let k > r/2. Then each graph G in Gk contains at least one component of size 1.

Since E(ξi) = 0 follows from the conditions, therefore∑
G∈Gk

s(G) = 0 .

It is obviously true in the case of either (iii), (iii’) or (iii”).
Let k < r/2. Assume that (iii’) is satisfied. We say that a component has degree l if

it has l distinct vertices. Let G be a graph in Gk with degrees l1, . . . , lk of components.
Then, from (iii’) it follows that

s(G) = s(I1) · · · s(Ik)

= O

(
ν

l1
2
n

)
· · ·O

(
ν

lk
2
n

)
= O

(
ν

1
2

∑k
u=1 lu

n

)
. (6)
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Let Nk be the number of the graphs in Gk which have degrees l1, . . . , lk of components.
Then, since in the u-th component there are lu points of which we have maximum n
possibilities to choose the first and maximum κn possibilities to choose the other points,
we obtain that

Nk ≤ cr

k∏
u=1

nκlu−1
n

= crn
kκ

∑k
u=1 (lu−1)

n

= crn
kκ

∑k
u=1 lu

n κ−k
n . (7)

Furthermore, based on (6) and (7), the sum of the scores of these graphs G satisfies the
relation ∑

G∈Gk

s(G) ≤ Nk max s(G)

= O
(
nkκ−k

n κ
∑k

u=1 lu
n ν

1
2

∑k
u=1 lu

n

)
. (8)

By condition (iv) of the theorem, we know that var(Sn) ≥ δnκnνn for δ > 0 and consid-
ering also (8), we get that∑

G∈Gk
s(G)

(varSn)
r
2

= O

nkκ
∑k

u=1 lu−k
n ν

1
2

∑k
u=1 lu

n

(δnκnνn)
r
2


= O

(
nk− r

2

(
κnν

1
2
n

)∑k
u=1 lu

κ
−k− r

2
n ν

− r
2

n

)
= O

(
nk− r

2 (κnν
1
2
n )

rκ
−k− r

2
n ν

− r
2

n

)
= O

((
n

κn

)k− r
2

)
= o(1) . (9)

In the last step we used condition (1).
If instead of condition (iii’) we have condition (iii), then (9) can be obtained in the

same way. The only difference is that lu should be the number of all vertices of Iu instead
of the number of different vertices. Then in (8) we have O

(
ν
r/2
n nkκr−k

n

)
.

Now, if condition (iii”) is given instead of (iii), then we obtain another situation be-
cause of the normality. Here, using Hölder inequality, we have

E|a1 · · · al| ≤

(
l∏

i=1

E|ai|l
) 1

l

for a1, . . . , al ∈ R. It is known that

E|N (0, 1)|p = Cp

=
2

p
2

√
π
Γ

(
p+ 1

2

)
.
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Therefore, we have

E

(
l∏

i=1

|ξi|pi
)

≤
l∏

i=1

(
E|ξi|pil

) 1
l

=
l∏

i=1

Cpilν
pi
2
n

≤ crν

∑l
i=1 pi
2

n . (10)

In this case,

s(G) = O
(
ν

1
2

∑k
u=1 lu

n

)
= O

(
ν

r
2
n

)
,

where lu is the number of vertices in Iu. So the upper bound of the scores is the same as
in (6). Hence, (9) is true.

If k = r/2 (where r is even) then, since there are r factors and k = r/2 compo-
nents, each component with nonzero score contains exactly 2 factors. (The expectation
of a component of one factor is 0 and if a component contains at least 3 factors, then
another component contains 1 factor so the expectation is also 0 here.) Since the distance
among the components is greater than m, these components of size 2 are independent
from each other and hence the expectation of their product is equal to the product of their
expectations. So the sum of products of the expectations of the components of size 2 is∑

G∈G r
2

s(G).

Proof of Theorem 1. First we remark that var(Sn) > 0 because, by condition (iv),

var(Sn) ≥ nδκnνn > 0 .

It is enough to show that the moments of Sn/
√

var(Sn) converge to the appropriate mo-
ments of the standard normal distribution since here the convergence in distribution holds
by the theorem of Fréchet and Shohat (1931).

Let {Y1, . . . , Yn} be observations of a strictly stationary Gaussian random field where
E(Yi) = 0, var(Yi) = var(ξi) and cov(Yi, Yj) = cov(ξi, ξj) hold for all i ̸= j. Let
Y1, . . . , Yn be located in the same way as ξ1, . . . , ξn. As in the Gaussian case the inde-
pendence and the zero correlation coincide, then because of the same covariance structure
and the same appropriate locations we can state that {Y1, . . . , Yn} is m-dependent. Let us
introduce the notation Tn = Y1 + · · ·+ Yn. Hence

var(Sn) = var(Tn) . (11)

Decomposing {Y1, . . . , Yn} into components can be accomplished in the same way as
decomposing {ξ1, . . . , ξn}.
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Let sY (G) be the score function of {Y1, . . . , Yn}. By Lemma 2, for an odd r

E
(

Sn√
varSn

)r

=

∑r
k=1

∑
G∈Gk

s(G)

(varSn)
r
2

= o(1) → 0

= E(N (0, 1))r .

Obviously, Tn/
√
var(Tn) has standard normal distribution. By Lemma 2, for an even r

E(N (0, 1))r = E

(
Tn√

var(Tn)

)r

=

∑
G∈G r

2

sY (G)

(var(Tn))
r
2

+ o(1) .

For G ∈ G r
2

we have s(G) = sY (G). Therefore, by Lemma 2 and equation (11), we
obtain that

E

(
Sn√

var(Sn)

)r

=

∑
G∈G r

2

s(G)

(var(Sn))
r
2

+ o(1)

=

∑
G∈G r

2

sY (G)

(var(Tn))
r
2

+ o(1) .

From the previous equalities we get that

E

(
Sn√

var(Sn)

)r

= E(N (0, 1))r + o(1)

holds. So the moments of Sn/
√

var(Sn) converge to the moments of the standard normal
distribution. We also know that the distribution function determined by the moments of
the standard normal law is unique. Then, by a theorem of Fréchet and Shohat (1931), we
can state that there is a convergence in distribution.

4 Multidimensional Case
The following theorem is the multivariate version of Theorem 1.

Theorem 3. Assume that (1) is satisfied. Consider the following conditions:

(I) Let {ξn(s) : s ∈ D}, D ⊆ Rd, n = 1, 2, . . . be a sequence of strictly stationary
m-dependent vector valued random fields of dimension q.

(II) For all n and s, let Eξn(s) = 0 and let Vn = var(ξn(s)). Assume that Vn is positive
definite if n is large enough.
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(III) For all {s′n1, . . . , s′nl} ⊆ {sn1, . . . , snn}, let

E

(
l∏

j=1

∥ξn(s′nj)∥

)
= O

(
(λmin(Vn))

l
2

)
hold uniformly as n → ∞ , (12)

where λmin(Vn) denotes the smallest eigenvalue of Vn.

(III’) For all pairwise different elements s′n1, . . . , s
′
nl of the set {sn1, . . . , snn}, relation

(12) is satisfied uniformly, κn (λmin(Vn))
1
2 ≥ 1 and ∥ξn(s)∥ ≤ 1 for all n and s.

(IV) For δ > 0, let
Vn + κnTn − δκnVn

be a positive semidefinite matrix where

Tn =
1

nκn

∑
(i,j)∈Tn

cov(ξn(sni), ξn(snj)) .

Let ξi = ξn(sni) and Sn = ξ1 + · · · + ξn. Then either conditions (I)–(II)–(III)–(IV) or
conditions (I)–(II)–(III’)–(IV) imply that

Sn is asymptotically N (0, var(Sn)).

Proof. Let a ∈ Rq be a fixed vector. Let us consider the scalar valued random fields
a⊤ξn(s). By the Cramér-Wold device (see Rao, 1965, pp. 103), we have to prove the
convergence of a⊤Sn. Therefore, we have to check the conditions of Theorem 1 for
a⊤ξn(s). It is enough to consider a with the condition ∥a∥ = 1.

We see that {a⊤ξn(s), s ∈ D}, n = 1, 2, . . . is a sequence of strictly stationary m-
dependent random fields, E(a⊤ξn(s)) = 0 and νn = var(a⊤ξn(s)) = a⊤Vna, νn > 0 for
n large enough.

Now, it is true by (III) that

E

∣∣∣∣∣
l∏

j=1

a⊤ξn(s
′
nj)

∣∣∣∣∣ ≤ ∥a∥lE

(
l∏

j=1

∥ξn(s′nj)∥

)
= ∥a∥lO

(
(λmin(Vn))

l
2

)
= O

((
a⊤Vna

) l
2

)
= O

(
(νn)

l
2

)
. (13)

Therefore (III) implies (iii).
Now let s′n1, . . . , s

′
nl be different points. Then (III’) implies (13). Moreover, |a⊤ξn(s)| ≤

∥a∥∥ξn(s)∥ ≤ 1 if ∥a∥ = 1 and ∥ξn(s)∥ ≤ 1. So (III’) implies (iii’).
We see that νn = a⊤Vna and τn = 1

nκn

∑
(i,j)∈Tn cov(a

⊤ξn(sni), a
⊤ξn(snj)) = a⊤Tna.

Therefore, by (IV),

νn + κnτn − δκnνn = a⊤ (Vn + κnTn − δκnVn) a ≥ 0 ,

i.e. (IV) implies (iv).
We see that var(Sn) = nVn + nκnTn is positive definite if n is large enough.
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5 Simulation Results
We present an example that gives numerical evidence for the phenomena described in the
paper.

Example: Two-dimensional moving average. The locations are the l-lattice points
of the domain D = [0, t]2 with l = 0.1 and t = 10. It means that the distance between
two neighbors is l = 0.1.

Then we consider the empirical distribution function F ∗
n of ξ(s) (the process is sta-

tionary, so ξ(1), . . . , ξ(n) are identically distributed). Thus, the random field is z(i,j) =
ξ(i/10,j/10), i, j = 1, . . . , 100. Let yk,l, k, l = 1, . . . , 102, be independent, uniformly dis-
tributed random variables on [0, 1] and let

z(i,j) =
1

9

i+2∑
k=i

j+2∑
l=j

yk,l , i, j = 1, . . . , 10 0.

Therefore, the random field is m-dependent with m = 3.
Then some points from the locations are omitted. In Figure 2 we mark with dark the

small squares where the locations are deleted. We see that in each white small square we
have 16 sites of observations. Denote the set of the remaining locations by D. So the
observations are z(i,j), i, j ∈ D. Therefore the actual sample size is 7056.

Figure 1: Sampling sites.
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Figure 2: Histograms of Sn/
√
n and F ∗

n(0.6) in the example.

Figure 3: Histograms of (F ∗
n(0.4)+F ∗

n(0.8))/2 and 0.3F ∗
n(0.3)+0.4F ∗

n(0.6)+0.3F ∗
n(0.8)

in the example.

It can be seen that the resulted domain is not convex. In the above proposition the
asymptotic properties of the estimator remain true. It is clearly shown by the following
numerical results.

The simulation was performed with MATLAB, 5000 repetitions of the procedure were
made.

In the left side of Figure 2 the histogram of Sn/
√
n, n = 7056, is shown with the

theoretical normal densities with mean and variance estimated from the data of the ex-
ample. In the right side of Figure 2 the density histogram of F ∗

n(0.6) can be seen with
the theoretical normal densities with mean and variance estimated from the data of the
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example.
In the left side of Figure 3 the density histogram of (F ∗

n(0.4) + F ∗
n(0.8))/2 is shown

with the theoretical normal densities where the mean and the variance are estimated from
the data of the example. In the right side of Figure 3 the density histogram of 0.3F ∗

n(0.3)+
0.4F ∗

n(0.6)+0.3F ∗
n(0.8) can be seen with the theoretical normal densities where the mean

and the variance estimated from the data of the example. These figures show the joint
asymptotic normality.
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