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Abstract: In this paper, shrinkage testimators for the inverse dispersion for
inverse Gaussian distribution when its prior information is available in the
form of a guess value have been considered. The proposed testimators have
been compared with the minimum risk estimator in the class of unbiased
estimators under the LINEX loss function.

Zusammenfassung: In dieser Arbeit werden shrinkage testimators für die
inverse Dispersion einer inversen Gauss Verteilung betrachtet, falls auch Vor-
information in Form eines vermuteten Wertes vorliegt. Die vorgeschlagenen
testimators werden mit dem minimalen Risiko Schätzer in der Klasse der un-
verzerrten Schätzer unter der LINEX Verlust Funktion verglichen.
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1 Introduction
The inverse Gaussian distribution is used as an important mathematical model for the
analysis of positively skewed data. The review article by Folks and Chhikara (1978) and
Seshadri (1998) have proposed many interesting properties and applications of this dis-
tribution. The probability density function f(x|µ, λ) of the inverse Gaussian distribution
IG(µ, λ), is given by

f(x|µ, λ) =

√
λ

2πx3
exp

(
−λ(x− µ)2

2µ2x

)
, x, µ, λ > 0 . (1)

Here µ stands for the mean and λ for the inverse measure of dispersion. Let x1, . . . , xn be
a random sample of size n drawn from IG(µ, λ). The maximum likelihood estimates of µ
and λ are

µ̂ =
1

n

n∑

i=1

xi = x̄ and λ̂ =
n

v
, where v =

n∑

i=1

(
1

xi

− 1

x̄

)
.

It is well known that x̄ and λ̃ = (n − 3)/v are unbiased estimates of µ and λ, re-
spectively. Also, x̄ ∼ IG(µ, nλ) and λv ∼ χ2

n−1, with x̄ and v being stochastically
independent (see Tweedie, 1957a, 1957b; Folks and Chhikara, 1978).

Varian (1975) and Zellner (1986) proposed an asymmetric loss function known as the
LINEX loss function for any parameter λ as

L(∆′) = b′(exp(d∆′)− d∆′ − 1) , d 6= 0 , b′ > 0 , and ∆′ = λ̂− λ ,
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where λ̂ is an estimate of λ. We reparameterize the class of the LINEX loss function in
the form

L(∆) = b(exp(a∆)− a∆− 1) , a 6= 0 , (2)

with the new scale parameter b = 2b′/a2 > 0 and ∆ = (λ̂− λ)/λ.
The sign and magnitude of a represents the direction and degree of asymmetry, re-

spectively. A positive (negative) value of a is used when overestimation is more (less)
serious than underestimation. For a near to zero, L(∆) is approximately square error and
therefore it is almost symmetric.

One may have a guess value λ0 of λ, which one may like to use to construct a pa-
rameter estimate. If this guess value is close to the true value the shrinkage technique is
useful to get improved estimators. Following Thompson (1968), shrinkage estimators for
the inverse dispersion λ are given by

T = λ0 + k(λ̃− λ0) , (3)

where the constant k, 0 ≤ k ≤ 1, is a shrinkage factor specified by the experimenter
according to his belief in the guess value. To resolve the uncertainty that λ0 is approxi-
mately λ or not, a preliminary test of H0 : λ = λ0 against the alternative H1 : λ 6= λ0 at
some preassigned level of significance may be considered. The idea of such a preliminary
test of significance is given in Bancroft (1944).

Pandey and Malik (1988) have obtained some estimators for the inverse dispersion
and have found that they perform better in the sense of a smaller mean squared error if the
guess value λ0 is in the vicinity of the true value. The use of the LINEX loss function in
estimation procedures has been considered in different contexts by Pandey (1997), Pandey
and Srivastava (2001), and Pandey et al. (2004).

In this paper, we propose shrinkage testimators for λ when a prior guess λ0 is available
and study it under the LINEX loss function. In Section 2, we propose a class of estimators
S = cλ̃ and find the value c1 for which the risk under the LINEX loss is minimum. An
estimate T̂ of T is obtained in Section 3 by minimizing the risk of T under the LINEX
loss. The risk of T̂ is compared with Ŝ = c1λ̃. Shrinkage testimators of λ are proposed
in Section 4 and their risks are compared with Ŝ.

2 A Class of Estimator and its Properties
The proposed class of estimators for λ in the inverse Gaussian distribution (1) is

S = cλ̃ . (4)

The LINEX loss function of S, using a Maclaurin expansion of (2), is

L(S) = b
a2

2

[(
c
n− 3

λv
− 1

)2

+
a

3

(
c
n− 3

λv
− 1

)3

+ O(a2)

]
.

Hence, the risk under the LINEX loss for S, ignoring the terms O(a2) is

R(S) = b
a2

2

[
c3a(n− 3)2

3(n− 5)(n− 7)
+

c2(1− a)(n− 3)

(n− 5)
+ c(a− 2) + 1− a

3

]
. (5)
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The value of c for which R(S) is minimum, is

c1 =
a− 1 +

√
1− 2a(a− 2)/(n− 7)

a(n− 3)/(n− 7)
, n > 7 .

Hence, the estimator

Ŝ = c1λ̃ = c1
n− 3

v

is the estimator of λ with minimum risk in the class S = cλ̃. The value of c obtained by
minimizing the mean squared error of S = cλ̃ is

c′ =
n− 5

n− 3
, n > 3 .

Thus, the usual estimator S∗ = (n − 5)/v is inadmissible under the LINEX loss and
c1 → c′ as a → 0. The risk of the estimator Ŝ under the LINEX loss is given by

R(Ŝ) = b( exp(−a)I(∞, c1, 1) + (a− ac1 − 1)) ,

where
I(u, v, r) =

1

Γ
(

n−1
2

)
∫ u

0
exp(−z + va(n− 3)/2z)z(n−1)/2−r dz . (6)

3 The Shrinkage Estimator and its Properties
The risk of the shrinkage estimator T under the LINEX loss as obtained for S is

R(T ) = b
a2

2
E

[
(k2β2

1 + 2β1β2k + β2
2) +

a

3
(k3β3

1 + β3
2 + 3k2β2

1β2 + 3kβ1β
2
2)

]
,

where β1 = (n − 3)/vλ − β, β2 = β − 1, and β = λ0/λ. The value of k minimizing
R(T ) is

k1 =
−B′ +

√
B′2 − 4A′C ′

2A′ , B′2 − 4A′C ′ > 0 , A′ 6= 0 ,

where

A′ = a

[
(n− 3)2

(n− 5)(n− 7)
− β3 − 3β

n− 3

n− 5
+ 3β2

]
,

B′ = 2
(
1 + a(β − 1)

) (
n− 3

n− 5
+ β2 − 2β

)
,

C ′ = −(1− β)2
(
2 + a(β − 1)

)
.

The value k1 depends on the unknown parameter λr, r = 1, 2, 3. An estimate k2 of k1

can be obtained by replacing λr by its unbiased estimate

λ̂r =
2rΓ

(
n−1

2

)

vrΓ
(

n−1
2
− r

) , r = 1, 2, 3 .
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The corresponding estimate of T is then

T̂ = λ0 + k2(λ̃− λ0) .

The risk of the estimator T̂ under the LINEX loss is

R(T̂ )=b
[
ea(β−1)G(∞, k2, 1, f2)+aβG(∞, 0, 1, f1)−a

n−3

2
G(∞, 0, 2, f1)+a−aβ−1

]
,

where

G(u, v, r, fi) =
1

Γ
(

n−1
2

)
∫ u

0
fi exp(−z + va(n− 3)/2z)z

n−1
2
−rdz , (7)

i = 1, 2, and f1 = k2, f2 = exp(−ak2β).
The relative efficiency of T̂ compared to Ŝ is defined as

RE(T̂ , Ŝ) =
R(Ŝ)

R(T̂ )
,

which is a function in n, a, and β. For the values n = 10, 15, 25, 35, a = −0.50(0.25)0.50
with a 6= 0, and β = 0.25(0.25)1.75, the relative efficiencies are presented in Table 1.
This table shows that the shrinkage estimator T̂ has smaller risk than Ŝ if λ0 is in the
vicinity of λ. More specifically, if n is small and 0.25 ≤ β ≤ 1.75, the proposed shrinkage
estimator is preferable to the class of unbiased estimators under the LINEX loss.

Table 1: Relative Efficiency(T̃ , Ŝ)
β

n a 0.25 0.50 0.75 1.00 1.25 1.50 1.75

10

-0.50 1.0626 1.2683 1.6163 1.7417 1.6648 1.5332 1.3763
-0.25 1.1184 1.4100 1.8321 1.9274 1.7356 1.5047 1.2973
0.25 1.2001 1.5431 1.9544 2.0092 1.7671 1.4849 1.2514
0.50 1.1913 1.3478 1.4829 1.4905 1.4044 1.2872 1.1719

15

-0.50 1.0683 1.2065 1.6784 1.9078 1.6811 1.4170 1.2068
-0.25 1.0857 1.2488 1.7386 1.9527 1.6881 1.3944 1.1716
0.25 1.1194 1.3177 1.8173 1.9933 1.6748 1.3398 1.0987
0.50 1.1527 1.2209 1.3310 1.3647 1.3171 1.2435 1.1700

25

-0.50 1.0821 1.0880 1.5375 1.9508 1.6026 1.2259 1.0615
-0.25 1.0882 1.1082 1.5661 1.9656 1.5896 1.2031 1.0335
0.25 1.1013 1.1458 1.6148 1.9832 1.5578 1.1547 0.9754
0.50 1.1195 1.1645 1.5001 1.7182 1.4435 1.1463 0.9968

35

-0.50 1.0960 1.0484 1.4347 1.9393 1.5282 1.1283 0.9910
-0.25 1.0992 1.0623 1.4555 1.9484 1.5136 1.1071 0.9678
0.25 1.1062 1.0888 1.4929 1.9608 1.4815 1.0631 0.9196
0.50 1.1101 1.1016 1.5083 1.9595 1.4627 1.0406 0.8953
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4 Shrinkage Testimators and their Properties

In Section 3 we have seen that T̂ has smaller risk than the usual estimator Ŝ when λ0 is
in the vicinity of λ. This suggests that on the basis of a given set of data, we should first
test H0 : λ = λ0. If H0 is accepted, T̂ is taken as the estimator of λ, otherwise we use Ŝ
instead of. Thus, we propose a shrinkage testimator for the inverse dispersion as

T ∗ =

{
k2(n− 3)/v + (1− k2)λ0 , if H0 : λ = λ0 is accepted,
c1(n− 3)/v , otherwise.

Muniruzzaman (1957) obtained a test statistic for testing H0 : λ = λ0 against the alterna-
tive H1 : λ 6= λ0. Under H0 we have λ0v ∼ χ2

n−1 and

H0 is rejected if r1 ≤ λ0v ≤ r2 or if t1 ≤ v ≤ t2 ,

where t1 = r1/λ0, t2 = r2/λ0 with r1 and r2 being the values of the lower and upper
100α/2% points of the chi-squared distribution with n− 1 degrees of freedom. Thus

T ∗ =

{
k2(n− 3)/v + (1− k2)λ0 , if t1 ≤ v ≤ t2 ,
c1(n− 3)/v , if v ≤ t1 or v ≥ t2 .

The risk under the LINEX loss of T ∗ is

R(T ∗) = b
{
ea(β−1)

[
G(z2, k2, 1, f2)−G(z1, k2, 1, f2)

]
+ e−aI(∞, c1, 1)

−e−a
[
I(z2, c1, 1)− I(z1, c1, 1)

]
+ aβ

[
G(z2, 0, 1, f1)−G(z1, 0, 1, f1)

]

−a
n− 3

2

[
G(z2, 0, 2, f1)−G(z1, 0, 2, f1)

]
− aβ

[
I(z2, 0, 1)− I(z1, 0, 1)

]

+ac1
n− 3

2

[
I(z2, 0, 2)− I(z1, 0, 2)

]
+ (a− ac1 − 1)

}
,

where I(·) and G(·) are defined in (6) and (7), respectively. Also, z1 = r1/2β and
z2 = r2/2β. The relative risk efficiency is RE(T ∗, Ŝ) = R(Ŝ)/R(T ∗). On the other
hand, if H0 is accepted then

r1 ≤ λ0v ≤ r2 ⇐⇒ 0 ≤ λ0v − r1

r2 − r1

≤ 1 .

Thus, one choice of the shrinkage factor based on the test statistic is

k3 =
λ0v − r1

r2 − r1

.

With this shrinkage factor, the proposed testimator is

T ∗∗ =

{
k3(n− 3)/v + (1− k3)λ0 , if t1 ≤ v ≤ t2 ,
c1(n− 3)/v , if v ≤ t1 or v ≥ t2 .

The risk of the testimator T ∗∗ can be obtained similarly as for T ∗ by simply replacing k2

with k3.
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The relative efficiency then is RE(T ∗∗, Ŝ) = R(Ŝ)/R(T ∗∗). The relative efficiencies
RE(T ∗, Ŝ) and RE(T ∗∗, Ŝ) are both functions in n, a, β, and α (the level of significance).
For the values n = 10, 15, 25, 35, a = −0.50(0.25)0.50 with a 6= 0, β = 0.25(0.25)1.75,
and α = 0.01, 0.05, we have calculated these values and present them in Tables 2 and 3.
From these tables we conclude that the shrinkage testimator T ∗ has smaller risk than Ŝ
when 0.25 ≤ β ≤ 1.50 for fixed n, a, and α. On the other hand, the shrinkage testimator
T ∗∗ is efficient when 0.75 ≤ β ≤ 1.50 for all considered values of n, a, and α. The
efficiencies of T ∗ and T ∗∗ are maximum at β = 1, where the gain in efficiency of T ∗∗ is
larger than T ∗. The effective intervals of T ∗ and T ∗∗ decrease as n increases.

Table 2: Relative Efficiency(T ∗, Ŝ)
β

n a α 0.25 0.50 0.75 1.00 1.25 1.50 1.75

10

-0.50
0.01 1.3268 1.4791 1.9142 2.1423 2.0790 1.8968 1.7115
0.05 1.4357 1.4359 1.7319 1.9250 1.8925 1.7455 1.5889

-0.25
0.01 1.4435 1.7309 2.2549 2.4193 2.1851 1.8542 1.5728
0.05 1.4966 1.7292 2.1722 2.2955 2.0417 1.7050 1.4349

0.25
0.01 1.5593 1.9980 2.5277 2.5893 2.2448 1.8390 1.5123
0.05 1.5393 1.9837 2.5494 2.5987 2.1868 1.7349 1.3998

0.50
0.01 1.5464 1.7648 1.9468 1.9548 1.8304 1.6577 1.4880
0.05 1.5253 1.7519 1.9595 1.9701 1.8223 1.6215 1.4352

15

-0.50
0.01 1.4299 1.4584 2.0496 2.4002 2.1160 1.7044 1.4032
0.05 1.4879 1.4727 1.9252 2.2262 1.9434 1.5512 1.2877

-0.25
0.01 1.4506 1.5288 2.1367 2.4594 2.1206 1.6745 1.3570
0.05 1.4931 1.5469 2.0390 2.3067 1.9510 1.5180 1.2376

0.25
0.01 1.4815 1.6489 2.2671 2.5215 2.1026 1.6147 1.2790
0.05 1.4998 1.6623 2.2197 2.4215 1.9559 1.4677 1.1640

0.50
0.01 1.4978 1.5570 1.6847 1.7180 1.6430 1.5244 1.4083
0.05 1.5006 1.5587 1.6806 1.7077 1.6167 1.4822 1.3619

25

-0.50
0.01 1.2927 1.3201 1.8706 2.4585 1.9795 1.4490 1.1702
0.05 1.2996 1.3862 1.7586 2.2721 1.8009 1.3249 1.1157

-0.25
0.01 1.2940 1.3533 1.9093 2.4756 1.9641 1.4209 1.1375
0.05 1.3997 1.4163 1.8086 2.2966 1.7851 1.2950 1.0800

0.25
0.01 1.3961 1.4159 1.9793 2.4961 1.9286 1.3666 1.0763
0.05 1.3998 1.4691 1.9019 2.3375 1.7550 1.2414 1.0157

0.50
0.01 1.4276 1.4577 1.8638 2.1650 1.7947 1.3733 1.1253
0.05 1.4899 1.4940 1.8202 2.0795 1.6774 1.2719 1.0706

35

-0.50
0.01 1.1997 1.2980 1.7183 2.4734 1.8459 1.2939 1.0804
0.05 1.2200 1.3952 1.6230 2.2817 1.6743 1.2070 1.0798

-0.25
0.01 1.2998 1.3205 1.7461 2.4825 1.8291 1.2698 1.0531
0.05 1.3500 1.4119 1.6580 2.2950 1.6568 1.1809 1.0495

0.25
0.01 1.4998 1.3633 1.7988 2.4935 1.7938 1.2231 1.0009
0.05 1.3525 1.4414 1.7256 2.3179 1.6234 1.1322 0.9919

0.50
0.01 1.2999 1.3840 1.8227 2.4902 1.7738 1.2006 0.9764
0.05 1.3562 1.4546 1.7575 2.3235 1.6066 1.1099 0.9650
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Table 3: Relative Efficiency(T ∗∗, Ŝ)
β

n a α 0.25 0.50 0.75 1.00 1.25 1.50 1.75

10

-0.50
0.01 0.9084 1.1066 2.3008 4.2514 4.0342 2.6386 1.7857
0.05 1.3143 1.2069 1.8041 2.5215 2.4694 1.9617 1.5447

-0.25
0.01 1.0104 1.2519 2.6105 4.7731 4.1340 2.5036 1.6219
0.05 1.3831 1.4292 2.2384 3.0491 2.6491 1.8912 1.3948

0.25
0.01 1.2127 1.5194 2.7341 4.0870 3.5184 2.3066 1.5508
0.05 1.4635 1.7036 2.5777 3.2085 2.6580 1.8756 1.3682

0.50
0.01 1.3725 1.5595 1.9944 2.2534 2.1447 1.8298 1.5109
0.05 1.4911 1.6404 1.9643 2.1151 1.9648 1.6817 1.4196

15

-0.50
0.01 1.0737 0.8785 2.1230 4.9376 3.5551 1.9217 1.2645
0.05 1.4376 1.1048 1.8020 2.9340 2.4123 1.6116 1.2063

-0.25
0.01 1.1214 0.9347 2.1857 4.9257 3.5360 1.8950 1.2307
0.05 1.4490 1.1751 1.9016 3.0165 2.4136 1.5807 1.1643

0.25
0.01 1.2062 1.0486 2.2761 4.7069 3.4296 1.8453 1.1782
0.05 1.4662 1.3021 2.0643 3.0994 2.4007 1.5370 1.1048

0.50
0.01 1.4091 1.3495 1.6835 1.8961 1.8121 1.5864 1.3717
0.05 1.4376 1.1048 1.8020 2.9340 2.4123 1.6116 1.2063

25

-0.50
0.01 1.4388 0.6727 1.5854 4.9915 2.7099 1.3909 0.9944
0.05 1.4978 1.0056 1.4449 2.9701 2.0788 1.3080 1.0532

-0.25
0.01 1.4456 0.7050 1.6166 4.9905 2.7074 1.3702 0.9663
0.05 1.4981 1.0436 1.4881 2.9958 2.0680 1.2812 1.0185

0.25
0.01 1.4568 0.7709 1.6757 4.9375 2.6951 1.3314 0.9145
0.05 1.4986 1.1158 1.5713 3.0317 2.0478 1.2342 0.9565

0.50
0.01 1.4702 0.9015 1.6516 3.2071 2.2686 1.3515 0.9825
0.05 1.4990 1.2158 1.5843 2.4565 1.8808 1.2690 1.0179

35

-0.50
0.01 1.4975 0.6492 1.2583 4.9016 2.2313 1.1792 0.9331
0.05 1.5000 1.0690 1.2237 2.9631 1.8443 1.1832 1.0485

-0.25
0.01 1.4978 0.6765 1.2820 4.9174 2.2270 1.1587 0.9056
0.05 1.5000 1.0969 1.2542 2.9812 1.8321 1.1574 1.0158

0.25
0.01 1.4982 0.7315 1.3288 4.9207 2.2164 1.1195 0.8535
0.05 1.5000 1.1495 1.3148 3.0094 1.8096 1.1099 0.9542

0.50
0.01 1.4984 0.7605 1.3524 4.8718 2.2061 1.1014 0.8296
0.05 1.5000 1.1750 1.3455 3.0097 1.7975 1.0885 0.9258

5 Summary

A minimum risk estimator under the LINEX loss for the inverse dispersion λ of the inverse
Gaussian distribution in the class of unbiased estimator has been proposed. As a shrinkage
estimator performs better, if the guess value λ0 is in the vicinity of true value λ, the
class of shrinkage estimators have also been proposed and compared with the minimum
risk estimator under the LINEX loss. By choosing the shrinkage factor, two testimators
T ∗ and T ∗∗ have been obtained. On the basis of numerical finding, we observed that
T ∗ performs better if 0.25 ≤ λ0/λ ≤ 1.50 and the estimator T ∗∗ performs better if
0.75 ≤ λ0/λ ≤ 1.50. Both these testimators have maximum relative efficiency when λ is
equal to λ0.



470 Austrian Journal of Statistics, Vol. 35 (2006), No. 4, 463–470

Acknowledgments

The authors are thankful to the referees for their helpful comments and suggestions for
clarity and improvement of the paper.

References
Bancroft, T. A. (1944). On biases in estimation due to the use of preliminary test of

significance. The Annals of Mathematical Statistics, 15, 190-204.
Folks, J. L., and Chhikara, R. S. (1978). The inverse gaussian distribution and its statisti-

cal application – a review. Journal of the Royal Statistical Society, B, 40, 263-289.
Muniruzzaman, A. N. M. (1957). On measures of location and dispersion and test of

hypothesis on a Pareto distribution. Calcutta Statistical Association Bulletin, 7,
115-123.

Pandey, B. N. (1997). Testimator of the scale parameter of the exponential distribution
using LINEX loss function. Communications in Statistics – Theory and Methods,
26, 2191-2200.

Pandey, B. N., and Malik, H. J. (1988). Some improved estimators for a measure of dis-
persion of an inverse gaussian distribution. Communications in Statistics – Theory
and Methods, 17, 3935-3949.

Pandey, B. N., and Srivastava, A. K. (2001). Estimation of variance using asymmetric
loss function. IAPQR Transactions, 26, 109-123.

Pandey, B. N., Srivastava, A. K., and Mishra, G. C. (2004). Invariant version of LINEX
loss function and its applications in exponential type II censored data. Aligarh
Journal of Statistics, 24, 1-22.

Seshadri, V. (1998). The Inverse Gaussian Distribution: Statistical Theory and Applica-
tions. New York: Springer Verlag.

Thompson, J. R. (1968). Some shrinkage techniques for estimating the mean. Journal of
the American Statistical Association, 63, 113-122.

Tweedie, M. C. K. (1957a). Statistical properties of inverse gaussian distribution – I. The
Annals of Mathematical Statistic, 28, 362-377.

Tweedie, M. C. K. (1957b). Statistical properties of inverse gaussian distribution – II.
The Annals of Mathematical Statistic, 28, 696-705.

Varian, H. R. (1975). A bayesian approach to real estate assessment. In S. E. Feinberge
and A. Zellner (Eds.), Studies in Bayesian Econometrics and Statistics in honor of
L.J. Savage (p. 195-208). Amsterdam: North Holland.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function.
Journal of the American Statistical Association, 81, 446-451.

Authors’ address:
Gyan Prakash and D. C. Singh
Department of Statistics,
Harishchandra P. G. College
Varanasi, Uttar Pradesh, India

E-mail: ggyanji@yahoo.com


