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Abstract: This paper proposes a new method for uniformly minimum vari-
ance unbiased fuzzy point estimation. For this purpose we make use of a
uniformly minimum variance unbiased estimator and we develop this new
method for a fuzzy random sample X̃1, . . . , X̃n is induced by X1, . . . , Xn on
the same probability space.

Zusammenfassung: In diesem Aufsatz schlagen wir eine neue Methode vor,
um einen unverzerrten Fuzzy-Punktschätzer mit gleichmäßig minimaler Var-
ianz zu bekommen. Dazu verwenden wir einen unverzerrten Punkt Schätzer
mit gleichmäßig minimaler Varianz und entwickeln diese neue Methode für
eine Fuzzy-Zufallsstichprobe X̃1, . . . , X̃n, welche aus X1, . . . , Xn auf dem
selben Wahrschenlichkeitsraum erzeugt ist.

Keywords: Fuzzy Random Variable, Fuzzy Statistic, Signed Distance, Fuzzy
Unbiased Estimator, Fuzzy Variance.

1 Introduction
Statistical analysis in traditional form is based on crispness of data, random variables
(RV’s), point estimations, hypotheses, parameters, and so on. But there are many other
situations in which the above mentioned concepts are imprecise. The point estimation
approaches are frequently used in statistical inference. On the other hand, the theory
of fuzzy sets is a well known tool for formulation and analysis of imprecise and sub-
jective concepts. Therefore, the uniformly minimum variance unbiased fuzzy estimator
(UMVUFE) with fuzzy data can be important. The problem of point estimation for an
unknown parameter, using fuzzy data, is developed in different approaches.

Kruse (1984) and Kruse and Meyer (1987) explained some methods for point and in-
terval estimation for examples of fuzzy random variables (FRV’s). Buckley (1983) studied
the problem of estimation, with fuzzy data by a fuzzy decision making approach. Okuda
(1987) considered fuzzy observations to estimate moments and parameters and he dis-
cusses maximum likelihood estimators and the loss of information due to fuzziness. Viertl
(1996) studied nonparametric methods in estimation using fuzzy data. Lopez-Diaz and
Gil (1998) derived some statistical inference methods, and studied their applications spe-
cially in statistical decision theory with fuzzy losses and fuzzy utilities. Cai et al. (1991)
proposed a method for estimating parameters of membership functions through defining
a likelihood function and studied its applications in fuzzy software reliability modelling.
Cai (1993) discussed parameter estimation methods for normal membership functions.
Lubiano et al. (1999) and Sadeghpour and Gien (2002) studied a Rao-Blackwell type
theorem for FRV’s. Lopez-Diaz and Gil (1998) defined a fuzzy unbiased estimator of
the sample mean in random sampling with replacement from a finite population. Garcia
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et al. (2001) illustrated estimating the expected value of a FRV in the stratified random
sampling. Some methods of statistical inference with fuzzy data are reviewed by Viertl
(2002a, 2002b).

There are some researches regarding the Bayesian point estimation methods com-
bined with ideas from fuzzy set theory. Hryniewicz (2002) proposed the notion of fuzzy
Bayes point estimation for fuzzy data. Gertner and Zhu (1997), based on two extensions
of likelihood function, generalized Bayesian estimates for use when sample information
and prior distribution are fuzzy. They applied their method to forest survey. Uemura
(1991, 1993) formulated the fuzzy Bayes decision rule to facilitate determination of the
loss function of a Bayes decision rule in a fuzzy environment. Wu (2003) studied fuzzy
estimators of fuzzy parameters based on FRV’s. Finally, Hong-Zhong et al. (2006) pro-
posed a new method to determine the membership function of the parameter estimate of
a multi-parameter distribution. This method can be used to determine the membership
function of Bayesian estimates of a multi-parameter distribution.

In this paper we organize the matter in the following way. In Section 2 we describe
some basic concepts of canonical fuzzy numbers and FRV’s. Also, we apply the rank-
ing fuzzy numbers based on signed distance (Yao and Wu, 2000) between fuzzy canon-
ical numbers. In Section 3 we summarize the research results report in the literature on
uniformly minimum variance unbiased estimators (UMVUE’s). Section 4 is devoted to
describe UMVUE’s using fuzzy data. Finally, some numerical examples are presented in
Section 5 in order to illustrate our proposed method.

2 Preliminaries
Let (Ω,F , P ) be a probability space. A RV X is a measurable function from (Ω,F , P )
to (X ,B, PX), where PX is the probability measure induced by X and is called the distri-
bution of X , i.e.,

PX(A) = P (X ∈ A) =

∫

X∈A

dP , ∀A ∈ B .

If PX is dominated by a σ−finite measure υ, then by the Radon-Nikodym theorem (see
Billingsley, 1995) we have

PX(A) =

∫

X∈A

f(x|θ)dυ(x) , ∀A ∈ B ,

where f(x|θ) is the Radon-Nikodym derivative of PX with respect to υ and is called
probability density function (PDF) of X with respect to υ. In a statistical context the
measure υ is usually a “counting measure” or a “Lebesgue measure”, hence PX(A) is
calculated by

∑
x∈A f(x|θ) or

∫
A

f(x|θ)dx, respectively.
Let SX = {x ∈ X |f(x|θ) > 0} be the “support” or “sample space” of X , then

a fuzzy subset x̃ of SX is defined by its membership function µx̃ : SX → [0, 1]. We
denote by x̃α = {x : µx̃(x) ≥ α} the α-cut set of x̃ and x̃0 is the closure of the set
{x : µx̃(x) > 0}. x̃ is called normal fuzzy set if there exist x ∈ SX such that µx̃(x) = 1
and is called convex fuzzy set if µx̃(λx + (1 − λ)y) ≥ min(µx̃(x), µx̃(y)) for λ ∈ [0, 1].



M. Akbari and A. Rezaei 309

The fuzzy set x̃ is called a fuzzy number if x̃ is a normal convex fuzzy set and its α-cut
set is bounded for all α 6= 0. x̃ is called a closed fuzzy number if x̃ is a fuzzy number and
its membership function µx̃ is upper semicontinous. x̃ is called a bounded fuzzy number
if x̃ is a fuzzy number and its membership function µx̃ has compact support.

If x̃ is a closed and bounded fuzzy number with xL
α = inf{x : x ∈ x̃α} and xU

α =
sup{x : x ∈ x̃α} and its membership function is strictly increasing on [xL

α, xL
1 ] and strictly

decreasing on [xU
1 , xU

α ], then x̃ is called canonical fuzzy number.
Given a real number x ∈ SX , we can induce a fuzzy number x̃ with membership

function µx̃(r) such that µx̃(x) = 1 and µx̃(r) < 1 for r 6= x. Let X be a RV with support
SX and F(SX) be a set of all fuzzy real numbers induced by the real numbers SX . If
F(R) are canonical fuzzy real numbers on R then it is obvious that F(SX) ⊆ F(R).

Definition 2.1 A FRV is a function X̃ : Ω → F(SX), where

{(ω, x) : ω ∈ Ω, x ∈ X̃α(ω)} ∈ F × B , ∀α ∈ [0, 1] ,

such that X̃ is induced by X .

Lemma 2.1 Let F(R) be a canonical fuzzy real number system. Then X̃ is a FRV iff XL
α

and XU
α are RV’s for all α ∈ [0, 1].

Definition 2.2 Let X be a RV with cumulative distribution function (CDF) F (x) and let
X̃ be a FRV induced by X . The fuzzy function F̃ (x̃) is called fuzzy cumulative distribution
function of the FRV X̃ , whenever its membership function equals

µF̃ (x̃)(y) = sup
0≤α≤1

αI[F L
α (x̃),F U

α (x̃)](y) ,

where

FL
α (x̃) = inf

α≤β≤1
{F (x) : x ∈ [xL

β , xU
β ]} ,

FU
α (x̃) = sup

α≤β≤1
{F (x) : x ∈ [xL

β , xU
β ]} .

The interval [FL
α (x̃), FU

α (x̃)] contains all of the CDF of each xL
β and xU

β for β ≥ α.
To assert the fuzzy expectation of a FRV X̃ , we first define EL

α(X̃) and EU
α (X̃) as

EL
α(X̃) = inf

α≤β≤1
{E(X) : X ∈ [XL

β , XU
β ]} ,

EU
α (X̃) = sup

α≤β≤1
{E(X) : X ∈ [XL

β , XU
β ]} .

The interval [EL
α(X̃), EU

α (X̃)] will contain all of the expectations of each RV XL
β and XU

β

for β ≥ α.

Definition 2.3 Let X̃ be a FRV induced by X . Then the fuzzy expectation of X̃ is a fuzzy
number Ẽ(X̃) with membership function

µẼ(X̃)(y) = sup
0≤α≤1

αI[EL
α(X̃),EU

α (X̃)](y) .
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Several ranking methods have been proposed so far by Cheng (1998), Modarres and
Sadi-Nezhad (2001), and Nojavan and Ghazanfari (2006). Here we use another ranking
system for canonical fuzzy numbers which is very realistic and is defined by Yao and Wu
(2000) as follows.

Definition 2.4 For any a, b ∈ R define their signed distance by d∗(a, b) = a − b. Thus,
we have the following possibilities to define the rank of any two numbers on R as

d∗(a, b) > 0 ⇔ d∗(a, 0) > d∗(b, 0) ⇔ a > b ,

d∗(a, b) < 0 ⇔ d∗(a, 0) < d∗(b, 0) ⇔ a < b ,

d∗(a, b) = 0 ⇔ d∗(a, 0) = d∗(b, 0) ⇔ a = b .

Definition 2.5 For each pair ã, b̃ ∈ F(R) define the signed distance as

d(ã, b̃) =

∫ 1

0

(Mα(ã)−Mα(b̃))dα =

∫ 1

0

d∗(Mα(ã),Mα(b̃))dα ,

where Mα(ã) and Mα(b̃) equal (aL
α + aU

α )/2 and (bL
α + bU

α )/2, respectively. Furthermore,
d(ã, b̃) denotes the distance between ã and b̃.

Definition 2.6 (Yao and Wu, 2000) For each ã, b̃ ∈ F(R), define their ranking by

d(ã, b̃) > 0 ⇔ d(ã, 0) > d(b̃, 0) ⇔ ã Â b̃ ,

d(ã, b̃) < 0 ⇔ d(ã, 0) < d(b̃, 0) ⇔ ã ≺ b̃ ,

d(ã, b̃) = 0 ⇔ d(ã, 0) = d(b̃, 0) ⇔ ã ≈ b̃ .

3 The UMVUE with Crisp Data
In this section, we describe concepts of UMVUE’s with crisp data. Let X1, . . . , Xn be
a random sample of size n, where the Xi’s have PDF f(x|θ) with unknown parameter
θ, θ ∈ Θ, and x1, . . . , xn are realizations of X1, . . . , Xn, respectively. Recall that an
estimator T (X1, . . . , Xn) of θ is unbiased iff E[T (X1, . . . , Xn)] = θ for any θ ∈ Θ. If an
unbiased estimator of θ exists, then θ is called an estimable parameter.

Definition 3.1 An unbiased estimator T (X1, . . . , Xn) of θ is called uniformly minimum
variance unbiased estimator (UMV UE) iff

var[(T (X1, . . . , Xn))] ≤ var[(U(X1, . . . , Xn)] ,

for any θ ∈ Θ and any other unbiased estimator U(X1, . . . , Xn) of θ.

The derivation of such an UMVUE is relatively simple if there exist a complete sufficient
statistic for θ ∈ Θ.

Theorem 3.1 (Lehmann-Scheffé) Suppose that there exists a complete sufficient statistic
T (X1, . . . , Xn) for θ ∈ Θ. If θ is estimable, then there exists an unique unbiased esti-
mator of g(θ) of the form h(T ) with a Borel function h. Furthermore, h(T ) is the unique
UMVUE of θ.
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There are two typically ways to derive a UMVUE when a complete sufficient statistic
is available. The first one is to solve for h when the distribution of T is available. The
second method to derive an UMVUE when there exists a complete sufficient statistic
(used here), is to condition on T , i.e., if U(X1, . . . , Xn) is an unbiased estimator of θ, then
E[(U(X1, . . . , Xn)|T )] is the UMVUE of θ. To apply this method, we do not need the
distribution of T but need to work out the conditional expectation E[U(X1, . . . , Xn|T )].
From the uniqueness of the UMVUE, it does not matter which U(X1, . . . , Xn) is used.
We should choose U(X1, . . . , Xn) to make the calculation of E[U(X1, . . . , Xn)|T ] as easy
as possible. For a review in more details, see Shao (2003).

4 An UMVUE with Fuzzy Data
Now we introduce concepts of an UMVUFE.

Definition 4.1 Let X̃ and Ỹ be two FRV’s induced by X and Y . We say that X̃ and Ỹ
are independent iff each RV in the set {XL

α , XU
α : 0 ≤ α ≤ 1} is independent of each RV

in the set {Y L
α , Y U

α : 0 ≤ α ≤ 1}.

Definition 4.2 We say that X̃ and Ỹ are identically distributed iff XL
α , Y L

α are identically
distributed, and XU

α , Y U
α are identically distributed for all α ∈ [0, 1].

Let X̃ = (X̃1, . . . , X̃n) be a fuzzy random sample induced by X = (X1, . . . , Xn) on
the sample probability space (Ω,F , P ), and with membership functions µX̃i

(y).
In traditional statistics, parameter estimates are functions of the sample. Formally,

based on the sample X for a RV X with sample space SX , PDF f(x|θ) and parameter
space Θ, estimators are functions δ(X) defined on the sample space SX1 × · · · × SXn .
For a realized sample x = (x1, . . . , xn) an estimation θ̂ of the parameter θ is obtained by
δ(x) = θ̂ ∈ Θ.

For a fuzzy random sample X̃ induced by X with membership functions µX̃i
(y) the

function δ̃(x̃), where x̃ = (x̃1, . . . , x̃n), becomes a fuzzy element ̂̃θ ∈ Θ, whose member-
ship function µδ̃(̃x) is derived by applying the extension principle (Klir and Yuan, 1995),
i.e.

µδ̃(x̃)(d) =

{
sup{min1≤i≤n µX̃i

(xi) : δ(x1, . . . , xn) = d} , δ−1(d) 6= ∅
0 , δ−1(d) = ∅

for any d ∈ Θ.
For a fuzzy random sample X̃, the fuzzy number δ̃(X̃) is called a fuzzy statistic,

provided that it is not a function of any unknown parameter. Let X̃i and Xi have CDF F̃
and F , respectively. A fuzzy statistic δ̃(X̃) is said to be a (point) estimator of θ̃, if

δ̃ : F(SX1)× · · · × F(SXn) → Θ ,

where F(SXi
) is the space of fuzzy values of X̃i.
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Each α-cut set of δ̃(X̃) depends on X. Suppose {δ(X) : Xi ∈ (X̃i)α} is a crisp
estimator of θ that is obtained by α-cut of δ̃(X̃). Define

δL
α = δL

α(X) = inf
α≤β≤1

{δ(X) : Xi ∈ (X̃i)β} ,

δU
α = δU

α (X) = sup
α≤β≤1

{δ(X) : Xi ∈ (X̃i)β} ,

where the interval I(δα) = [δL
α , δU

α ] contains all the crisp estimators of each RV XL
iβ and

XU
iβ for β ≥ α.

Definition 4.3 The fuzzy estimator δ̃(X̃) is unbiased for θ̃ iff for all α ∈ [0, 1] and δ0 ∈
[δL

α , δU
α ] there exists a θ0 ∈ θ̃α such that E(δ0) = θ0.

Let D̃ be a nonempty set of all fuzzy unbiased estimators δ̃(X̃) for θ̃.

Definition 4.4 The fuzzy estimator δ̃(X̃) is sufficient for θ̃ iff for each α ∈ [0, 1] and
δ ∈ I(δα), δ is a sufficient statistics for θ ∈ θ̃α.

Now we define the membership function of the fuzzy variance function of δ̃(X̃), de-
noted by ṽar(δ̃(X̃)), as

µṽar(y) = sup
0≤α≤1

αI[varL
α ,varU

α ](y) ,

where
varL

α = inf
δ∈I(δα)

{var(δ(X))} , varU
α = sup

δ∈I(δα)

{var(δ(X))} . (1)

Definition 4.5 δ̃∗(X̃) is an UMVUFE of θ̃ iff δ̃ is unbiased and

ṽar∗ = ṽar(δ̃∗) w ṽar = ṽar(δ̃) , ∀ δ̃ ∈ D̃ ,

where notation “ w ” denotes signed distance.

Theorem 4.1 Let X = (X1, . . . , Xn) be a random sample and X̃ = (X̃1, . . . , X̃n) be a
fuzzy random sample induced by X. If Ũ(X̃) is a fuzzy unbiased estimator for θ̃ and T̃ (X̃)
a fuzzy sufficient statistics for θ̃, then the UMVUFE δ̃∗(X̃) has membership function

µδ̃∗(X̃)(y) = sup
0≤α≤1

αI[EL
α ,EU

α ](y) ,

in which

EL
α = inf

α≤β≤1
{E[U(X)|T (X)] : Xi ∈ (X̃i)β} ,

EU
α = sup

α≤β≤1
{E[U(X)|T (X)] : Xi ∈ (X̃i)β} .

Proof: We first prove that δ̃∗ is a canonical fuzzy number. Define Sα = {(x1, . . . , xn) :
xi ∈ (x̃i)α} and k(x1, . . . , xn) = E[U(X)|T (X)] for (x1, . . . , xn) ∈ Sα and α ∈ [0, 1].

We know that x̃i’s are canonical fuzzy numbers, k is continuous, Sα is connected,
closed, and bounded implying that the range of k is a closed and bounded interval of real
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numbers. Define δ̃∗α = k(Sα) for α ∈ [0, 1]. Furthermore δ̃∗1 = E[U(X)|T (X)] 6= ∅.
Hence, δ̃∗α is a canonical fuzzy number.

To proof unbiasedness, let α ∈ [0, 1] and δ∗α ∈ [δ∗Lα , δ∗Uα ]. Thus there exists a Xi ∈ X̃iα

such that δ∗α(X) = E[U(X)|T (x)], E[δ∗α(X)] = E[U(X)]. Now we know that Ũ(X̃) is an
unbiased fuzzy estimator. By definition 4.3 there exists a θ0 ∈ θ̃α such that E[δ∗α(X)] =
E[U(X)] = θ0. As a result, δ̃∗(X̃) is a fuzzy unbiased estimator.

According to definition 4.4, Tα is a sufficient statistic for θ0 and in the other words,
U(X) is unbiased for θ0. Thus

var(δ∗α(X)) ≤ var(U(X)) . (2)

According to (1) we have

varL
α(Ũ(X)) = inf

U∈I(Uα)
{var(U(X))} ,

and for δ̃∗(X̃) we can write

varL
α(δ̃∗(X)) = inf

δ∗∈[EL
α ,EU

α ]
{var(δ∗)} .

Thus, based on (2) we have
varL

α(δ̃∗) ≤ varL
α(Ũ) ,

and similarly it can be also shown that varU
α (δ̃∗) ≤ varU

α (Ũ). According to the function
M in the Yao-Wu signed distance, we have

d(ṽar∗, ṽar) =

∫ 1

0

(Mα(ṽar∗)−Mα(ṽar))dα ≤ 0 ,

because Mα(ṽar∗) ≤ Mα(ṽar). Hence, ṽar(δ̃∗(X̃)) / ṽar(Ũ(X̃)). ¥

5 Numerical Examples
Now we illustrate the proposed approach for some distributions.

Example 5.1 Let X be a RV from a N(θ, 1) population, i.e.

f(x|θ) =
1√
2π

exp

(
−1

2
(x− θ)2

)
, x, θ ∈ R .

Consider x̃1, . . . , x̃n with triangular membership functions (xi − a, xi, xi + b) given by

µx̃i
(y) =

{
(y − xi + a)/a , xi − a ≤ y ≤ xi ,
(xi + b− y)/b , xi ≤ y ≤ xi + b

for each 1 ≤ i ≤ n and a, b ≥ 0. We can interpret the canonical fuzzy numbers x̃i as the
values of “near to xi”. We have

µδ̃∗(X̃)(y) = sup
0≤α≤1

αI[EL
α ,EU

α ](y) ,
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such that
EL

α = x− (1− α)a , EU
α = x + (1− α)b ,

and we note that in crisp form for this example the UMVUE is δ∗(X) = X and also
µδ̃∗(x̃)(x) = 1. For instance when a = b = 5 and our fuzzy observations x̃1, . . . , x̃6 have
membership functions

µx̃1(y) =

{
(y − 40)/5 , 40 ≤ y ≤ 45
(50− y)/5 , 45 ≤ y ≤ 50

, µx̃2(y) =

{
(y − 50)/5 , 50 ≤ y ≤ 55
(60− y)/5 , 55 ≤ y ≤ 60

µx̃3(y) =

{
(y − 65)/5 , 65 ≤ y ≤ 70
(75− y)/5 , 70 ≤ y ≤ 75

, µx̃4(y) =

{
(y − 80)/5 , 80 ≤ y ≤ 85
(90− y)/5 , 85 ≤ y ≤ 90

µx̃5(y) =

{
(y − 110)/5 , 110 ≤ y ≤ 115
(120− y)/5 , 115 ≤ y ≤ 120

, µx̃6(y) =

{
(y − 117)/5 , 117 ≤ y ≤ 122
(127− y)/5 , 122 ≤ y ≤ 127 .

We derive
[EL

α, EU
α ] = [82− 5(1− α), 82 + 5(1− α)] .

Hence, δ̃∗(x̃) is a canonical fuzzy number and µδ̃∗(x̃)(82) = 1.

Example 5.2 Let X be a RV from a E(θ, 1) population, i.e.,

f(x|θ) = exp(−(x− θ)) , x > θ , θ > 0 ,

and let x̃i be some fuzzy observations with membership functions

µx̃i
(y) =

{
exp(−(y − xi)

2) , xi − 0.5 ≤ y ≤ xi + 0.5
0 , otherwise

for each 1 ≤ i ≤ n. We can interpret the canonical fuzzy numbers x̃i as the values of
“near to xi”. We have

µδ̃∗(x̃)(y) = sup
0≤α≤1

αI[EL
α ,EU

α ](y)

such that

EL
α =

{
x(1) − 1/n− 0.5 , 0 ≤ α ≤ exp(−0.25)
x(1) − 1/n−√− log α , exp(−0.25) ≤ α ≤ 1

,

EU
α =

{
x(1) − 1/n + 0.5 , 0 ≤ α ≤ exp(−0.25)
x(1) − 1/n +

√− log α , exp(−0.25) ≤ α ≤ 1
.

We note that in crisp form for this example the UMVUE is δ∗(X) = X(1) − 1/n and also
µδ̃∗(x̃)(x(1) − 1/n) = 1.

Example 5.3 Let X be a RV from a U ∼ (θ, θ + 1) population i.e.,

f(x|θ) = 1 , θ ≤ x ≤ θ + 1 , 0 < θ < 1 ,

and x̃i are fuzzy observations with triangular membership functions (xi − a, xi, xi + b).
We have

EL
α = (x(1) + x(2) − 1)/2− (1− α)a , EU

α = (x(1) + x(2) − 1)/2 + (1− α)b .
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Thus, the membership function of δ̃∗(x̃) is

µδ̃∗(x̃)(y) = sup
0≤α≤1

αI[EL
α ,EU

α ](y) .

Example 5.4 Let X be a RV from an exponential population with mean 1/θ, i.e.,

f(x|θ) = θ exp(−θx) , x > 0 , θ > 0 ,

and let x̃i’s be some fuzzy observations with membership functions

µx̃i
(x) =

{
exp(−(x− xi)

2) , xi − 0.5 ≤ x ≤ xi + 0.5
0 , otherwise

for each 1 ≤ i ≤ n. Then we have

EL
α =





n− 1

n(x + 0.5)
, 0 ≤ α ≤ exp(−0.25)

n− 1

n(x +
√− log α)

, exp(−0.25) ≤ α ≤ 1

EU
α =





n− 1

n(x− 0.5)
, 0 ≤ α ≤ exp(−0.25)

n− 1

n(x−√− log α)
, exp(−0.25) ≤ α ≤ 1

.

Thus, the membership function of δ̃∗(x̃) is

µδ̃∗(x̃)(y) = sup
0≤α≤1

αI[EL
α ,EU

α ](y) .

Example 5.5 Let X be a RV with PDF

f(x|θ) =
1

θ
, 0 < x < θ .

Let x̃1 and x̃2 be two fuzzy canonical numbers with triangular membership functions
(xi − a′, xi, xi + b′), then we have

[EL
α, EU

α ] =

[
n + 1

n
(x(1) − (1− α)a′),

n + 1

n
(x(1) + (1− α)b′)

]
.

Furthermore, the parameter estimate at any α-cut level can be calculated with respect to
membership function

µδ̃∗(x̃)(y) = sup
0≤α≤1

αI[EL
α ,EU

α ](y) .

6 Conclusion
From the above discussion, it is clear that under Yao-Wu signed distance, the UMVUF
estimator propose a canonical fuzzy number. The UMVUF estimator has the smallest
fuzzy variance of the other fuzzy estimator for fuzzy parameter θ̃.
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