- Kuenzer, T., Hörmann, S., and Kokoszka P. (2020). Principal component analysis of spatially indexed functions. Journal of the American Statistical Association, 116, 1444–1456.
- Hörmann, S., Kokoszka, P., and Nisol, G. (2018). Detection of periodicity in functional time series. The Annals of Statistics, Volume 46, 2960-2984.
- Hörmann, S., Kidziński, Ł., and Hallin, M. (2015). Dynamic functional principal components. Journal of the Royal Statistical Society: Series B, 77, 319–348.
- Aue, A., Dubart Norinho, D., Hörmann, S. (2015). On the prediction of stationary functional time series. Journal of the American Statistical Association, 110, 509, 378–392.
- Berkes, I., Hörmann, S., Schauer, J. (2011). Split invariance principles for stationary processes. The Annals of Probability, 39, 2441–2473.
- Hörmann, S., Kokoszka, P. (2010). Weakly dependent functional data. The Annals of Statistics, 38, 1845–1884.
- Aue, A., Hörmann, S., Horváth, L., Reimherr, M. (2009). Break detection in the covariance structure of multivariate time series models. The Annals of Statistics, 37, 4046–4087.